http://www.v9594.cn/newsdetail_2927541.html
光學膜發(fā)展到今日,技術(shù)相對成熟,種類豐富,包括偏光片、擴散膜、導光板、背板膜、鋰電隔膜、窗膜、水處理膜、膠黏膜等。那么這些薄膜的發(fā)明者究竟是誰?發(fā)明之初是怎樣設(shè)計的?它們的誕生背后又有怎樣的故事?今天我們就一起來了解一下最初始的功能薄膜。
偏光片
目前最通用的偏光膜是蘭特在1938年所發(fā)明的H片,其制法如下:首先把透明塑料板(通常用PVA)浸漬在I2/KI的水溶液中,使碘離子擴散滲入內(nèi)層的PVA,微熱后拉伸,PVA板變長的同時也變得又窄又薄。
PVA分子本來是任意角度無規(guī)則性分布的,受力拉伸后就逐漸一致地偏轉(zhuǎn)于作用力的方向,附著在PVA上的碘離子也跟隨著有方向性,形成了碘離子的長鏈。因為碘離子有很好的起偏性,它可以吸收平行于其排列方向的光束電場分量,只讓垂直方向的光束電場分量通過,制成具有偏光作用的偏光膜。
而實際應(yīng)用于光電行業(yè)的偏光片產(chǎn)業(yè)最早萌芽于日本,1999年5月,我國臺灣省第一家偏光片廠商力特光電投產(chǎn),標志著日本廠商獨占偏光片市場的時代結(jié)束,但力特的技術(shù)依然來源于日本廠商的技術(shù)授權(quán)。而韓國則于2000 年初開始進軍TFT用偏光板市場,首家廠商LG化學于2000年3月量產(chǎn),年產(chǎn)能125萬片。
我國偏光片項目始于1994年,該年,深紡集團公司決定上馬偏光片項目,由美國ADS公司提供生產(chǎn)設(shè)備與技術(shù)并參股,成立了盛波公司。但由于美方技術(shù)人員對技術(shù)掌握不夠,經(jīng)兩年多調(diào)試未生產(chǎn)出一張合格產(chǎn)品。1997年美方撤股退出合作。此后經(jīng)過盛波科研人員的努力,在1998年底公司終于成功開發(fā)出合格產(chǎn)品。
目前,老牌的偏光片生產(chǎn)廠商如日東電工已經(jīng)開始轉(zhuǎn)型不再開出新的產(chǎn)能,LG化學和住友化學也放慢了擴張步伐。韓國ACE和日本三立子因為資金問題,新線項目也處于停滯。現(xiàn)在日系原料廠認為最有發(fā)展前景的還是大陸市場及本土的偏光片廠。
擴散膜
擴散膜具有擴散光線的作用,即光線在其表面會發(fā)生散射,將光線柔和均勻的散播出來;多數(shù)擴散膜的基本結(jié)構(gòu)是在透明基材上如PET兩面涂光學散光顆粒。擴散膜起源于日本,最早由Keiwa、Kimoto、Tsujiden等日本廠商所掌控,Keiwa在1990年首次推出擴散膜產(chǎn)品。在同期Tsujiden與Kimoto也推出了類似擴散膜產(chǎn)品。
反射膜
反射膜,是通過特殊的工藝來增加薄膜特殊性能的膜材料,一般是一種以透明薄膜為原料,通過特殊的鍍膜工藝來增加薄膜材料光學表面的反射率的特殊薄膜材料。反射膜可分為三大類:金屬反射膜、全電介質(zhì)反射膜和金屬電介質(zhì)反射膜。應(yīng)用于光學器件的反光材料研究已有上百年的歷史,但其起源卻難以追溯。如今反射膜技術(shù)已經(jīng)比較完善。到目前為止,最好的反射膜是由數(shù)百層增反薄膜組成的多層膜反射片,和普通反射片95%左右的反射率相比,其對幾乎所有可見光波長都具有99%~100%的反射率。
這樣的反射片在循環(huán)增亮系統(tǒng)中非常有用,因為它可以減少循環(huán)光每次在反射時的損失。雖然在反射率上相差不多,但是在加載棱鏡膜或者反射偏振片之后,得到的增益變化都在10%以上。
導光板
導光板(light guide plate)是利用光學級的亞克力/PC板材,然后用具有極高反射率且不吸光的高科技材料,在光學級的亞克力板材底面用UV網(wǎng)版印刷技術(shù)印上導光點。
LCD導光板照明技術(shù)最早是由日本明拓公司于1986年發(fā)明的,稱為EDGE LIGHT,是目前筆記本電腦液晶顯示屏背光照明的主流方法。它的工作原理是利用PMMA透明導光板將由冷陰極熒光管(線光源)發(fā)出的純色白光,從透明板端面導入并擴散到整個板面,當光照射到導光板背面印刷的白色反光點時發(fā)生漫反射,從與光源入射面垂直的板面(工作面)射出。導光板照明通過巧妙運用光在透明板界面上全反射的原理,將端面射入的光偏轉(zhuǎn)90°,從正面射出,從而起到照明的作用。
這種照明方式表面亮度高且照明系統(tǒng)體積小巧,對光的利用效率較高因而電力消耗較低,在筆記本電腦及數(shù)碼像機等需要使用大面積LCD的產(chǎn)品方面獲得了廣泛的應(yīng)用。
增亮膜BEF
20多年前的一個冬天,一位3M的研究人員在加拿大魁北克的一個地下室里做實驗。因為位于北半球的高緯度,冬天太陽整天低懸在地平線上方,所以他發(fā)明了一種帶棱鏡的玻璃導管。斜射的陽光射入管道一端后,會沿著導管壁傳播,整個管子像個燈管通體發(fā)亮,使地下室明亮許多。
之后,3M公司采用薄膜技術(shù)生產(chǎn)了這種光導管,但多年來,這種棱鏡導管的應(yīng)用一直局限于建筑照明或裝飾,年銷量很小。20世紀90年代,隨著筆記本電腦的普及,液晶顯示技術(shù)開始迅速發(fā)展。由于液晶顯示器獨特的特性和結(jié)構(gòu),光的利用率非常低。如何增加液晶顯示的亮度一直是困擾科研人員的難題。
偶然的一個奇思妙想讓3M的科學家嘗試著剪開這種棱鏡導管,平鋪在LCD背光源上。令人意想不到的事情發(fā)生了,由于棱鏡的聚光作用,這個新穎的嘗試方法讓液晶顯示屏正向的亮度大為提高。之前,3M的科學家曾經(jīng)受到蝴蝶翅膀由于鱗片物理結(jié)構(gòu)對光線的折射、反射產(chǎn)生不同斑點想象的啟發(fā),利用高分子工業(yè)上最先進的計算機模擬控制系統(tǒng),成功地發(fā)明了3M?多層光學膜(Multilayer Optical Film )技術(shù),通過改變薄膜的結(jié)構(gòu)來控制光的出射。
這種多層膜由上百層納米級的膜組成,每一層的材料性質(zhì)都不同。通過膜層間的光學作用,最終達到反射光的功能。
由此,3M的科學家想到了將這兩個獨特的發(fā)現(xiàn)合二為一,經(jīng)過一段時間的研究開發(fā),3M結(jié)合微復(fù)制技術(shù)和薄膜技術(shù),進一步優(yōu)化了棱鏡導管的聚光功能,從而使其增亮效果更加顯著,并將其命名為增亮膜BEF。
為了讓客戶更好地接受這一產(chǎn)品,3M的工程師購買了兩臺當時市場上最好的筆記本電腦,將其中一臺加上兩片棱鏡方向相互垂直的增亮膜。在這層不起眼的薄膜的作用下,電腦屏幕亮度竟然比原來增加了一倍多!當這兩臺電腦擺在它的制造商面前,他們很快就被說服了。
從這一天起,增亮膜開始了它的神奇之旅,廣泛應(yīng)用于小至手機、PDA,大至電腦顯示器、液晶電視等各種液晶顯示產(chǎn)品中,而這些產(chǎn)品的制造商也不再被如何既省電又能使屏幕亮度增加這個難題困擾了。
聚酰亞胺膜
聚酰亞胺膜(PolyimideFilm)或許是世界上已知的性能最好的薄膜類絕緣材料,有著“黃金薄膜”的美譽,包括均苯型聚酰亞胺薄膜和聯(lián)苯型聚酰亞胺薄膜兩類。前者為美國杜邦公司產(chǎn)品,商品名Kapton,由均苯四甲酸二酐與二苯醚二胺制得。后者由日本宇部興產(chǎn)公司生產(chǎn),商品名Upilex,由聯(lián)苯四甲酸二酐與二苯醚二胺(R型)或間苯二胺(S型)制得。
光學鍍膜
光學鍍膜最早用在光學元件表面制備保護膜。隨后,1817年,F(xiàn)raunhofe在德國用濃硫酸或硝酸侵蝕玻璃,偶然第一次獲得減反射膜,1835年以前有人用化學濕選法淀積了銀鏡膜,它們是最先在世界上制備的光學薄膜。后來,人們在化學溶液和蒸氣中鍍制各種光學薄膜。
50年代,除大塊窗玻璃增透膜的一些應(yīng)用外,化學溶液鍍膜法逐步被真空鍍膜取代。真空蒸發(fā)和濺射這兩種真空物理鍍膜工藝,是迄今在工業(yè)撒謊能夠制備光學薄膜的兩種最主要的工藝。它們大規(guī)模地應(yīng)用,實際上是在1930年出現(xiàn)了油擴散泵——機械泵抽氣系統(tǒng)之后。
1935年,有人研制出真空蒸發(fā)淀積的單層減反射膜。但它的最先應(yīng)用是1945年以后鍍制在眼鏡片上。1938年,美國和歐洲研制出雙層減反射膜,但到1949年才制造出優(yōu)質(zhì)的產(chǎn)品...
自50年代以來,光學膜主要在鍍膜工藝和計算機輔助設(shè)計方面得到了迅速的發(fā)展。在鍍膜方面,一系列離子基新技術(shù)得到了研究和應(yīng)用。1953年,德國的Auwarter申請了用反應(yīng)蒸發(fā)鍍光學薄膜的專利,并提出用離子化的氣體增加化學反應(yīng)性的建議。
70年代以來,人們研究并應(yīng)用了離子輔助淀積、反應(yīng)離子鍍和等離子化學氣相等一系列新技術(shù)。由于使用了帶能離子,它們能夠提供足夠的活化能,提高了表面的反應(yīng)速度。提高了吸附原子的遷移性,避免形成柱狀顯微結(jié)構(gòu),從而不同程度地改善了光學薄膜的性能,是光學薄膜制造工藝的研究和發(fā)展方向。
文章來源:模切之家